ANALYTICAL RESULTS OF SURFACE WATER SAMPLES COLLECTED FROM RACCOON CREEK July 29, 1998 Sampling Event

Prepared for

ARCO CHEMICAL COMPANY/BEAZER EAST INC. Monaca, Pennsylvania

Prepared by

Applied Hydrology Associates, Inc. Denver, Colorado

August 31, 1998

ARCO CHEMICAL COMPANY

Monaca, Pennsylvania

TABLE OF CONTENTS

C	
Section	
SCCHOIL	

		Page
1.0	INTRODUCTION	1
2.0	SAMPLING	1
3.0	RESULTS	2

Tables

- 1 Summary of Analytical Results for Samples Collected from Raccoon Creek
- 2 Historical Benzene Concentrations at Transect E

Figures

- l Transect Location Map
- 2 Surface Water Benzene Concentrations at Transect E

Appendices

Appendix A Groundwater Elevations, East and West Sides of Raccoon Creek

Appendix B Data Validation Report

Monaca, Pennsylvania

1.0 INTRODUCTION

This report presents the results of surface water samples collected from Raccoon Creek at the ARCO Chemical Company (ACC) / Beazer East Inc. (BEI) Monaca, PA site during the July 1998 quarterly monitoring event. The samples were collected in compliance with Appendix D of the Consent Order and Agreement (CO&A) between ACC, BEI and the Pennsylvania Department of Environmental Protection (PADEP) dated October 20, 1997.

2.0 SAMPLING

Surface water samples were collected on July 29, 1998 at Transect E as defined in the 1997 CO&A. The locations of Transect E is shown in Figure 1. In addition, water elevations were measured in nearby monitoring wells and the results are presented in Appendix A.

A total of nine surface water samples, including two duplicates were collected from Raccoon Creek on July 29, 1998. In addition, a trip blank was shipped and analyzed. These samples were collected at the same three locations along Transect E as in previous sampling events. The locations are shown in Figure 2 and are at the center of the stream, and approximately 30 feet from the east and west banks. At the center location, samples were collected at three depths: 6 inches below surface, 2 inches above the bottom, and midway between the surface and bottom. Samples from the east and west sides of the transect were collected at two depths: 1 to 2 inches above the bottom, and midway between the surface and bottom.

During sampling the boat was anchored at Transect E and the anchors were laid away from the sampling location so sediment would not be introduced into the water sample. The samples were collected by using a peristaltic pump to pump water from the desired depth into three 40-milliliter vials preserved with hydrochloric acid. The depth of sample collection was controlled by securing tubing to a probe long enough to reach the bottom of the creek. The tubing was secured at the desired depth from the bottom of the probe, and the probe was set on the bottom of the creek. Care was taken not to disturb the sediments at the sampling location and the water was closely monitored to ensure sediment was not included in the sample. After the sample had been collected, the tubing was moved to the correct depth for the next sample, reattached to the probe, and the next sample was collected after again lowering the probe. One length of tubing was used for all sampling depths at each location; tubing was discarded and replaced between sampling locations.

The samples were uniquely numbered as follows to identify the location, depth and date of sampling:

RC-EC-00-0798

Where:

RC indicates Raccoon Creek; EC indicates transect (E) and location (C = center, L = left bank, R = right bank

([facing downstream]); indicates sample depth in feet and tenths of a foot (0.0 feet); and

0798 indicates the date collected (July 1998)

00

ARCO CHEMICAL COMPANY

Monaca, Pennsylvania

Samples were logged onto a chain of custody form (included as part of the data validation report in Appendix B) and stored on ice until receipt by Reliance Laboratories Inc. in Edison, NJ. Reliance analyzed the samples using USEPA Method 524.2 for BTEXS.

3.0 RESULTS

The analytical results are presented in Table 1, which is the Certificate of Analysis from Reliance Laboratories. Benzene was detected in two of the eight samples (0.13 μ g/L in sample RC-ER-34-0798, 0.22 μ g/L in sample RC-ER-61-0798). Sampling locations and depths are shown on Figure 2, along with the concentration of benzene at each location. Water levels in wells near Raccoon Creek are presented in Appendix A.

The analytical data were validated upon receipt and found to be acceptable. A Data Validation Report is included as Appendix B. Table 2 presents the historical concentration of benzene in Raccoon Creek at Transect E during all monitoring events to date.

TABLE 1

R E L I A N C E LABORATORIES INC.

175 MAY STREET, EDISON, NJ 08837 PH (908) 738-5454 FAX (908) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

LABORATORY ID NJ DEP NO. 12687 PA DER NO. 68437

CERTIFICATE OF ANALYSIS

Customer:

Arco Chemical

Sample:

Aqueous Samples

Date Sampled:

29 July 1998

Lab ID:

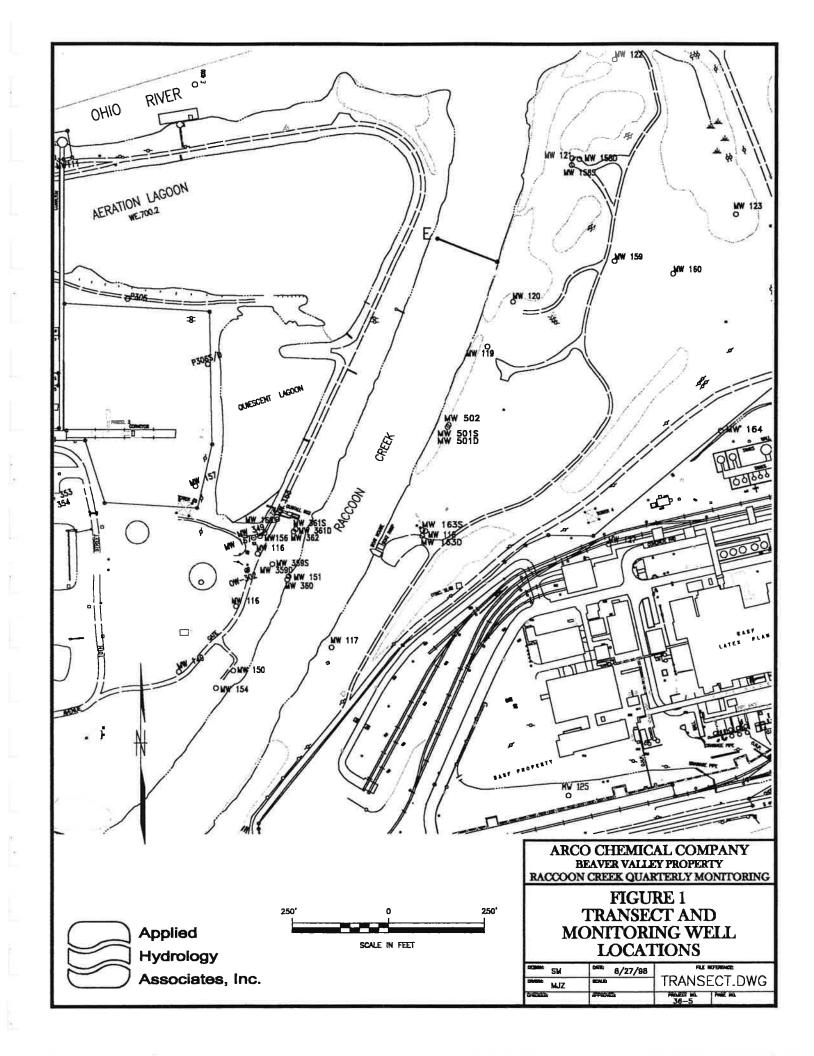
R-6075

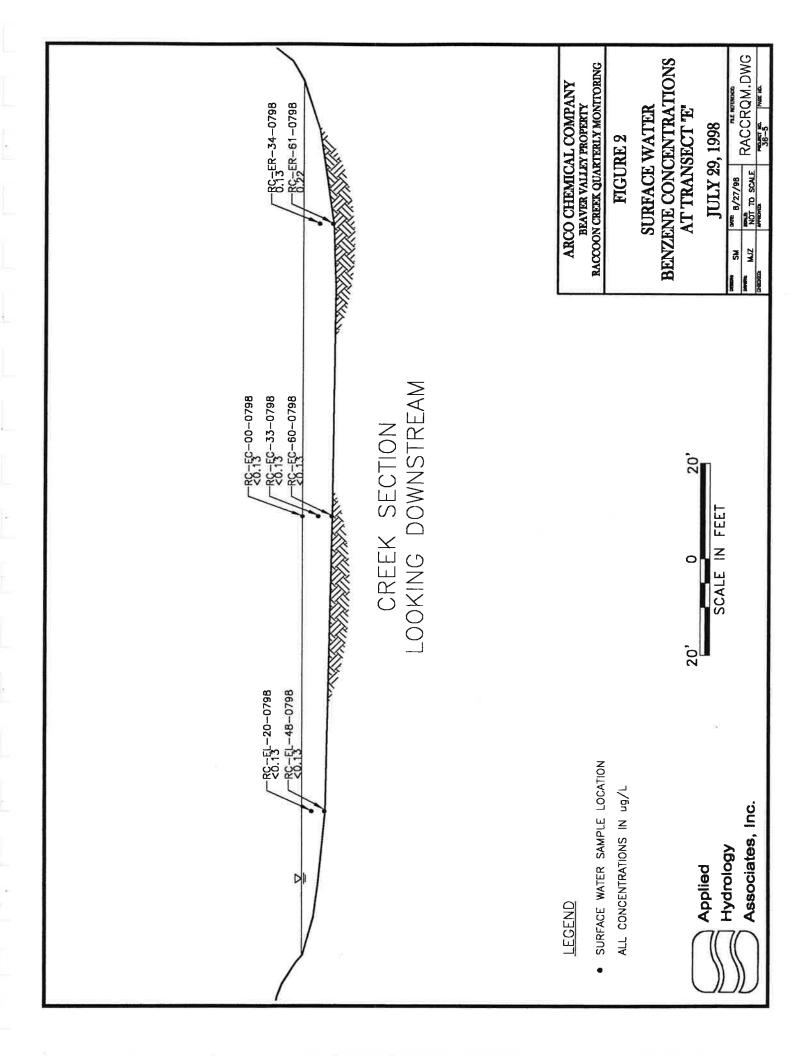
Reference:

Arco Beazer/Monaca

31 July 1998

Units: μg/L


Sample ID	Benzene	Toluene	Ethylbenzene	Xylene	Styrene
RC-EL-20-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EL-48-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-60-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-00-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-33-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-33-0798A	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-60-0798A	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-ER-34-0798	0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-ER-61-0798	0.22	< 0.6	< 0.22	< 0.22	< 0.58
Trip Blank	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58


G. P. Kirpalani Manager

Monaca, Pennsylvania

Table 2 Historic Benzene Concentrations at Transect E (ug/L)

Sampling Location	Sampling Depth	7/23/97	10/28/97	2/25/98	5/21/98	7/29/98
30 Feet off West Bank	Shallow	0.28	<0.13	<0.13	0.70	<0.13
30 Feet off West Bank	Deep	0.81	<0.13	<0.13	0.70	<0.13
Center of Creek	Shallow	0.24	<0.13	0.38	0.70	<0.13
Center of Creek	Mid-Depth	0.18	<0.13	0.49	0.64	<0.13
Center of Creek	Deep	0.46	<0.13	0.30	0.60	<0.13
30 Feet off East Bank	Shallow	0.16	<0.13	<0.13	<0.13	0.13
30 Feet off East Bank	Deep	<0.13	<0.13	0.14	0.22	0.22

Appendix A

Groundwater Elevations, East and West Sides of Raccoon Creek

AHA Filename: BVRC798.doc

Number Top of Casing (TOC) (ft. amsl) Calculated Water from TOC (2) (ft. amsl) Calculated SPL Thickness (3) (ft. amsl)					OTH AREA		
MW - 360 685.84 ND 2.18 683.66 N/A MW - 170 706.70 ND 21.98 684.72 N/A MW 362 689.43 ND 5.70 683.73 N/A RACCOON CREEK AREA Well Number (TOC) (ft. amsl) Depth to SPL (from TOC (2) (ft. amsl) Depth to Water (from TOC (2) (ft. amsl) Calculated Water (ft. amsl) Calculated SPL (ft. amsl) Comments (ft. amsl) MW-118 690.39 ND 6.72 683.67 N/A MW - 502 701.86 ND 18.15 683.71 N/A MW - 119 705.59 ND 21.86 683.73 N/A MW - 120 709.42 ND 25.69 683.73 N/A MW - 121 713.90 ND 30.23 683.67 N/A	Well Number	" -	_	-	Calculated Water		Comments
MW - 170 706.70 ND 21.98 684.72 N/A MW 362 689.43 ND 5.70 683.73 N/A RACCOON CREEK AREA Well Number Top of Casing (TOC) (ft. amsl) Depth to SPL from TOC (2) (ft. amsl) Calculated Water (ft. amsl) Calculated SPL Thickness (3) (ft. amsl) Comments MW-118 690.39 ND 6.72 683.67 N/A MW - 502 701.86 ND 18.15 683.71 N/A MW - 119 705.59 ND 21.86 683.73 N/A MW - 120 709.42 ND 25.69 683.73 N/A MW - 121 713.90 ND 30.23 683.67 N/A		(ft. amsl)	(ft. amsl)	(ft. amsl)	(ft. amsl)	(ft. amsl)	
MW 362 689.43 ND 5.70 683.73 N/A	MW - 360	685.84	ND	2.18	683.66	N/A	
Number Top of Casing (TOC) (ft. amsl) Depth to SPL (ft. amsl) Depth to Water (from TOC (2) (ft. amsl) (ft. ams	MW - 170	706.70	ND	21.98	684.72	N/A	
Well Number (TOC) (TOC) (ft. amsl) Depth to SPL from TOC (2) (ft. amsl) Depth to Water from TOC (2) (ft. amsl) Calculated Water Level Elevation (1) (ft. amsl) Calculated SPL Thickness (3) (ft. amsl) Comments MW-118 690.39 ND 6.72 683.67 N/A MW - 502 701.86 ND 18.15 683.71 N/A MW - 119 705.59 ND 21.86 683.73 N/A MW - 120 709.42 ND 25.69 683.73 N/A MW - 121 713.90 ND 30.23 683.67 N/A	MW 362	689.43	ND	5.70	683.73	N/A	
MW-118 690.39 ND 6.72 683.67 N/A MW-502 701.86 ND 18.15 683.71 N/A MW-119 705.59 ND 21.86 683.73 N/A MW-120 709.42 ND 25.69 683.73 N/A MW-121 713.90 ND 30.23 683.67 N/A				RAC	COON CREEK AF	EA	
(ft. amsl) (ft. amsl) (ft. amsl) (ft. amsl) MW- 118 690.39 ND 6.72 683.67 N/A MW - 502 701.86 ND 18.15 683.71 N/A MW - 119 705.59 ND 21.86 683.73 N/A MW - 120 709.42 ND 25.69 683.73 N/A MW - 121 713.90 ND 30.23 683.67 N/A	Well Number	Top of Casing	Depth to SPL	Depth to Water	Calculated Water	Calculated SPL	Comments
MW- 118 690.39 ND 6.72 683.67 N/A MW - 502 701.86 ND 18.15 683.71 N/A MW - 119 705.59 ND 21.86 683.73 N/A MW - 120 709.42 ND 25.69 683.73 N/A MW - 121 713.90 ND 30.23 683.67 N/A		(TOC)	from TOC (2)	from TOC (2)	Level Elevation (1)	Thickness (3)	
MW - 502 701.86 ND 18.15 683.71 N/A MW - 119 705.59 ND 21.86 683.73 N/A MW - 120 709.42 ND 25.69 683.73 N/A MW - 121 713.90 ND 30.23 683.67 N/A		(ft. amsl)	(ft. amsl)	(ft. amsl)	(ft. amsl)	(ft. amsl)	
MW - 119 705.59 ND 21.86 683.73 N/A MW - 120 709.42 ND 25.69 683.73 N/A MW - 121 713.90 ND 30.23 683.67 N/A	MW- 118	690.39	ND	6.72	683.67	N/A	
MW - 120 709.42 ND 25.69 683.73 N/A MW - 121 713.90 ND 30.23 683.67 N/A	MW - 502	701.86	ND	18.15	683.71	N/A	
MW - 121 713.90 ND 30.23 683.67 N/A	MW - 119	705.59	ND	21.86	683.73	N/A	
	MW - 120	709.42	ND	25.69	683.73	N/A	
MW - 152 696.35 ND 12.67 683.68 N/A	MW - 121	713.90	ND	30.23	683.67	N/A	
	MW - 152	696.35	ND	12.67	683.68	N/A	
Note: See Figure 1 (1) Calculated values, based on Elevation of TOC minus Depth to Water from TOC.							

AHA FilenameRaccwtrl.xls 1 OF 5 8/28/989:05 AM

				OTH AREA		
Well Number	Top of Casing (TOC) (ft. amsl)	Depth to SPL from TOC (2) (ft. amsl)	Depth to Water from TOC (2) (ft. amsl)	Calculated Water Level Elevation (1) (ft. amsl)	Calculated SPL Thickness (3) (ft. amsl)	Comments
MW - 344	709.42	ND	25.39	684.03	N/A	
MW - 359S	692.93	ND	9.26	683.67	N/A	
MW - 361S	689.40	ND	5.72	683.68	N/A	
MW - 169	707.93	ND	24.25	683.68	N/A	
MW - 167	707.36	ND	23.70	683.66	N/A	
Note: See Figur	re 1	F				
1) Calculated	values, based or	Elevation of To	OC minus Depth t	o Water from TOC.		

AHA FilenameRaccwtrl.xls 2 OF 5 8/28/989:05 AM

			RAC	CCOON CREEK AF	EA	
Well Number	Top of Casing (TOC) (ft. amsl)	Depth to SPL from TOC (2) (ft. amsl)	Depth to Water from TOC (2) (ft. amsl)	Calculated Water Level Elevation (1) (ft. amsl)	Calculated SPL Thickness (3) (ft. amsl)	Comments
MW - 163S	690.87	ND	7.18	683.69	N/A	
MW - 501S	701.30	ND	17.88	683.42	N/A	
MW - 162S	706.05	ND	22.34	683.71	N/A	
MW - 159	708.99	ND	25.38	683.61	N/A	
MW - 160	701.00	ND	17.34	683.66	N/A	
MW - 158S	713.60	ND	30.01	683.59	N/A	
MW - 122	692.78	ND	9.23	683.55	N/A	
Note: See Figu	re 1					
		Elevation of To	OC minus Depth t	to Water from TOC.		
				. ND means no SPL	was detected.	

AHA FilenameRaccwtrl.xls 3 OF 5 8/28/989:05 AM

		wat	THE RESERVE OF THE PARTY OF THE	coon Creek and Ohio River EK AREA STAFF GAUGE
Time of observation	Staff Gauge Elevation (a) (ft. amsl) 685,00	Staff Gauge reading 1.30	Calculated Water Level Elevation (ft. amsl) 683.30	Comments
11:50	685.00	1.50	683.50	
	Augustinia de la constitución de		OHIO RIV	ER. STAFF GAUGE
Time of observation	Staff Gauge Elevation (b) (ft. amsl)	Staff Gauge reading	Calculated Water Level Elevation (ft. amsl)	Comments
7:52 14:08	685.96 685.96	3.30 3.49	683.26 683.45	
14.00	005.70	5.17	003.15	
			on staff gauge Raccoo on staff gauge Ohio R	

				OTH AREA	Sand and Grave	
Well Number		_	Depth to Water		Calculated SPL	Comments
	(TOC)	from TOC (2)	from TOC (2)	Level Elevation (1)	Thickness (3)	
	(ft. amsl)	(ft. amsl)	(ft. amsl)	(ft. amsl)	(ft. amsl)	
MW 345	708.91	ND	25.32	683.59	N/A	
MW 361D	689.35	ND	5.65	683.70	N/A	
MW 359D	692.80	ND	9.16	683.64	N/A	
			RAC	COON CREEK AR	EEA	
Well Number	Top of Casing	Depth to SPL	Depth to Water	Calculated Water	Calculated SPL	Comments
	(TOC)	from TOC (2)	from TOC (2)	Level Elevation (1)	Thickness (3)	
	(ft. amsl)	(ft. amsl)	(ft. amsl)	(ft. amsl)	(ft. amsl)	
MW 163D	689.62	ND	5.86	683.76	N/A	
MW 501D	701.44	ND	17.88	683.56	N/A	
MW 166D	703.95	ND	20.31	683.64	N/A	
MW 158D	712.04	ND	28.59	683.45	N/A	
Note: See Figu						
				to Water from TOC. e. ND means no SPL		

AHA FilenameRaccwtrl.xls 5 OF 5 8/28/989:05 AM

Appendix B Data Validation Report

AHA Filename: BVRC798.doc

08/28/98

1720 South Bellaire Street, Suite 600 Denver, CO 80222

Tel: (303) 782-0164 Fax: (303) 782-0139

MEMORANDUM

DATE:

8/20/98

TO:

Skip Meier

FROM:

Kevin Ritter

RE:

Data Validation Results, ARCO Monaca Facility

Data validation was performed on the volatile organic analytical data from nine samples and one trip blank collect on July 29, 1998. The validation was performed in accordance with the "National Functional Guidelines for Evaluating Organic Analyses" as modified by USEPA Region III (June 1992). Reliance Laboratories, Inc. performed the analyses using EPA Method 524.2, (EPA-600/R-92-129, August 1992). The samples reviewed included:

Field Sample ID	Lab Sample ID
RC-EL-20-0798	R-6075.1
RC-EL-48-0798	R-6075.2
RC-EC-60-0798	R-6075.3
RC-EC-00-0798	R-6075.4
RC-EC-33-0798	R-6075.5
RC-EC-33-0798A	R-6075.6
RC-EC-60-0798A	R-6075.7
RC-ER-34-0798	R-6075.8
RC-ER-61-0798	R-6075.9
TRIP BLANK	R-6075.10

Items reviewed and actions taken were as follows:

✓ Method:

The ten samples were analyzed for BTEXS by method USEPA 524.2.

✓ Samples:

All samples were analyzed.

✓ Holding Time:

All samples were analyzed within the 14-day holding time. Note that all samples were field preserved with hydrochloric acid.

✓ Blanks:

No target compounds were detected in any of the associated method blanks or the trip blank.

✓ Surrogates:

All 4-bromofluorobenzene and 1,2-dichlorobenzene-d4 surrogate recoveries were within the 80-120 percent criteria.

✓ <u>Internal Standards</u>:

All fluorobezene internal standards were within the established criteria for area and retention time.

✓ BFB Tunes:

All bromofluorobenzene (BFB) tunes met mass calibration criteria.

✓ Initial Calibrations:

The initial calibration performed on June 30, 1998 for Instrument HP5971A met the 20 percent relative standard deviation (RSD) and 0.05 minimum relative response factor criteria for all compounds. Initial calibrations are good for 30 days as long as the continuing calibrations are valid.

✓ Continuing Calibrations:

All continuing calibrations met the percent différence and minimum relative response factor criteria for all compounds.

✓ Matrix spike/Duplicate:

The matrix spike/duplicate performed on sample RC-EC-60-0798 met all accuracy and precision criteria.

✓ <u>Target Compound Identification/Quantitation:</u>

No problems were identified with compound identification or quantitation.

✓ Field Duplicate:

Two field duplicate pairs were collected during this sampling event: RC-EC-33-0798/RC-EC-33-0798A and RC-EC-60-0798/RC-EC-60-0798A. The relative percent difference (RPD) equation will yield a maximum value of 200% if one of the two concentrations is zero. Since non-detection does not necessarily mean a zero concentration, RPD was not calculated for these duplicate pairs since all constituents were reported as non-detects.

✓ Summary:

The data were acceptable as reported.

RELIANCE LABORATORIES, INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

ANALYTICAL REPORT

For Arco Chemical Co. Pittsburgh, PA 15219

Project: AHA

RELIANCE LABORATORIES, INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

ANALYTICAL DATA REPORT

for

Arco Chemical Co. Pittsburgh, PA 15219 Project:

Date Received: 7/31/98

Sample ID	Lab ID #
RC-EL-20-0798	R-6075.1
RC-EL-48-0798	R-6075.2
RC-EC-60-0798	R-6075.3
RC-EC-00-0798	R-6075.4
RC-EC-33-0798	R-6075.5
RC-EC-33-0798A	R-6075.6
RC-EC-60-0798A	R-6075.7
RC-ER-34-0798	R-6075.8
RC-ER-61-0798	R-6075.9
Trip Blank	R-6075.10

These samples have been analyzed by EPA method 524.2 for a selected compound list. The results are not designed for use for drinking water purposes.

G. P. Kirpalani

lip Kuralan

Manager

GPK/vb

RELIANCE LABORATORIES INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

TABLE OF CONTENTS

Laboratory Chronicle	page	1
Non-Conformance Summary	page	2
Methodology Summary	page	3
Analytical Results	page	5
QA/QC Data	page	6
Laboratory Certificate	page 3	36
Chain of Custody	page 3	37

RELIANCE LABORATORIES, INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

LABORATORY CHRONICLE

Customer Name Arco Chemical Co. Date Received: 7/30/98 Date Sampled: 7/29/98 Sample ID: As per chain of custody	
Organic Extraction:	
2 Paca / Noutrale	
2 Particidas/PCP's	
4 TPHC	
Analysis:	
1 Volatiles	7/30/98 7/31/98
4 Pesticides/PCB's 5 TPHC	
5 IPHC	
Inorganics:	
1 Metals	
2 Cyanides	
3 Phenols	
Other Analysis:	
Supervisor Review & Approval	Up Kirpalani

RELIANCE LABORATORIES INC.

3090 WOODBRIDGE AVENUE, EDISON NJ 08837 PH (908) 738-5454 FAX (908) 738-5841

NON-CONFORMANCE SUMMARY

Reliance Labs received 9 water samples for BTEXS by method 524.2 from Arco/AHA on 30 July 1998. Samples consisted of 10 vials including trip blank.

Matrix spike recovery analysis was performed on sample and results are attached.

All analyses were performed within the required holding time.

STANDARD OPERATING PROCEDURE METHOD 524.2

1. Scope

This is the general method for the procedure used to identify purgeable volatile organics in portable water. The sample is purged with ultra high purity helium and concentrated into a trap. The volatiles are then thermally desorbed onto a megabore column and identified using a mass spectrometer detector.

- 2. Equipment and Apparatus
- A. Sample containers- 40ml screw caps amber vials.
- B. Purge and Trap System.
 - 25cm VOCARB 3000 trap.
- C. Glassware
 - 1. 20 ml fritted purging vessels.
 - 2. 25 ml teflon sealed syringe with lever lock assembly.
 - 3. 10 μL syringes.
- D. Gas Chromographic / Mass Spectrometer.
 - 1. Column type J&W

75 m, 0.53 mm ID, DB624 3 microns

- E. Apparatus Conditions
 - 1. Tekmar (purge and trap)
 - a. Purge time 2 min.
 - b. Desorb time and temp.: 250° for 2 min.
 - c. Bake time and temp. : 260° for 12 min.
 - d. Flow rate : 15 cc/min.
 - 2. GC Conditions

b.

- a. Column flow 15 cc/min.
 - Initial temp. 35° C
- c. Ramping Rate 6° C/min.
- d. Final temp. 200° C
- e. Run time 47.25 min.
- f. Initial time 6 min.
- 3. Stock Standards
- A. Internal Standard
 - Flourobenzene
- B. Surrogates
 - 1. 1,2-dichlorobenzene-d4
 - 2. 4-bromoflurobenzene
- C. Prepare standard solutions for all target compounds and surrogates at 20 ppm.
- D. Prepare internal standard at 20 ppm in methanol.
 - Prepare all standards and store in teflon sealed 1 ml vials.

Run Sequence 4.

- Tune Instrument A.
- Inject 1µL of 25 ppm BFB into GC. 1.
 - Tune must pass against criteria. a.
 - Tune must be run before any samples, blank or calibrations can be run. b.
 - From time to tune 12 hours are available to run all QC data and samples. c.

Five Point Calibration Curve B.

- Purge five (5) concentrations of standard solutions containing all the target analysis at 1 ppb, 2 ppb, 5 ppb, 10 ppb, and 20 ppb.
- The above standard must be run within 12 hours of injecting the BFB tune.
- Created a calibration curve with the above standard runs. 3.
 - If the 30% RSD deviation is exceeded the standards must be run again (still within 12 hours)
- Create an identification file from this calibration curve for automated 4. quantification.
- If time remains in the 12-hour run period go to step F. C.
- If the 12-hour period has expired, a new tune must be injected and a new sequence must D.
- Once an initial calibration curve is established a continuing calibrations check may be run. E. A continuing calibration check is required every time the mass spectrometer is tuned.
 - 2 ppb concentration of all target compounds is purged and quanted against current ID file.
 - Check the response factors of this run against the average RF of the calibration 2. file. The RF of the continuing calibration must be within \pm 50% D (difference) of the 5 point for all compounds.
 - The area counts of internal standard and surrogates must not be decreased by 3. >30% from the most recent continuing calibration standard nor decrease by >50% from the initial calibration standard.

Daily Blank F.

- Purge 20 ml of laboratory reagent water (nanopure) with 5 ppb internal standard 1. and 5 ppb each surrogate.
- Run this blank and quant against current ID file. 2.
- If blank does not meet criteria, it must be rerun before analyzing any samples. 3.

G. Samples

- Fill 25 ml syringe until it overflows with sample. Then adjust the volume to 20 ml 1. exactly.
- Inject 5 µl each 25 ppm internal standard and surrogate standard solution into 2. each sample.
- Run and quant against the current 5 point calibration curves. 3.
- Any sample with target compound over 50 ppb must be rerun at the appropriate 4. dilution.
- Any sample not injected in 12-hour period must be rerun. 5.

Quality Control Sample (QCS) H.

Analyze a QCS from an external source at least quarterly.

R E L I A N C E LABORATORIES INC.

175 MAY STREET, EDISON, NJ 08837 PH (908) 738-5454 FAX (908) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

LABORATORY ID NJ DEP NO. 12687 PA DER NO. 68437

CERTIFICATE OF ANALYSIS

Customer:

ICF Kaiser / Arco Chemical

Sample:

Aqueous Samples

Date Sampled:

29 July 1998

Lab ID:

R-6075

Reference:

Arco Beazer/Monaca

31 July 1998

Units: μg/L

Sample ID	Benzene	Toluene	Ethylbenzene	Xylene	Styrene
RC-EL-20-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EL-48-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-60-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-00-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-33-0798	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-33-0798A	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-60-0798A	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-ER-34-0798	0.13	< 0.6	< 0.22	< 0.22	< 0.58
RC-ER-61-0798	0.22	< 0.6	< 0.22	< 0.22	< 0.58
Trip Blank	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58

G. P. Kirpalani Manager

Data File : c:\hpchem\1\data\v5608.d

: 30 Jul 98 10:17 pm Acq On

: R-6075.3 Sample Misc

: Arco - RC-EL-20-0798

Quant Time: Jul 31 9:00 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via: Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) Fluorobenzene	12.88	96	1750106	5.00 ug/L 0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.95 31.13	95 152	653297 419165	%Recovery 4.74 ug/L 94.71% 4.79 ug/L 95.71%

Target Compounds

Qvalue

Vial: 9

Inst : 5971 - In

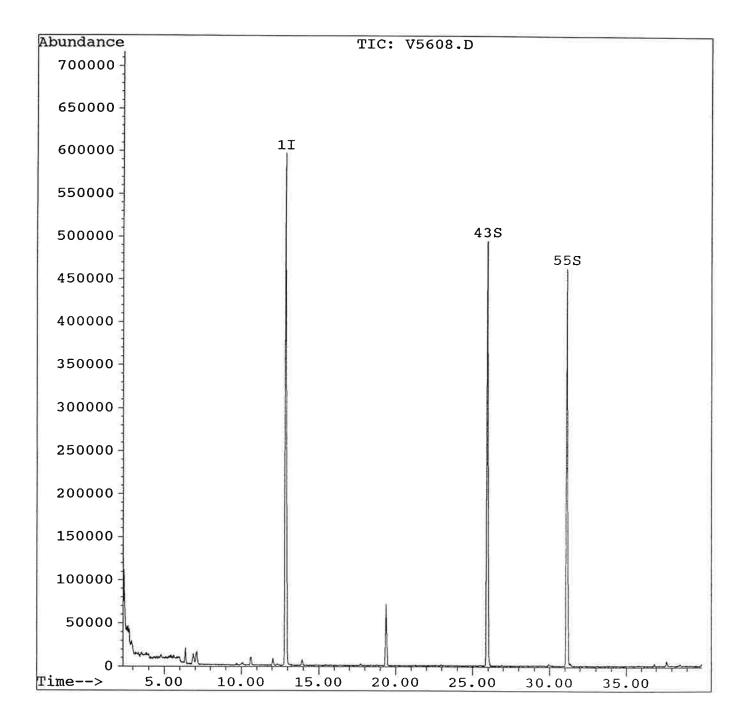
Operator: vb

Multiplr: 1.00

^{(#) =} qualifier out of range (m) = manual integration v5608.d RUN524.M Fri Jul 31 09:04:52 1998

Data File : c:\hpchem\1\data\v5608.d Acq On

: 30 Jul 98 10:17 pm


Sample : R-6075.3

Misc : Arco - RC-EL-20-0798

Quant Time: Jul 31 9:00 1998

: C:\HPCHEM\1\METHODS\RUN524.M Method

: 524.2 Purgable Organics Title Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Vial: 9

Multiplr: 1.00

: 5971 - In

Operator: vb

Inst

Data File : c:\hpchem\1\data\v5609.d

Vial: 10 Acq On : 30 Jul 98 11:04 pm Operator: vb

Sample : R-6075.4 Misc : Arco - RC-EL-48-0798 Inst : 5971 - In Multiplr: 1.00

Quant Time: Jul 31 9:00 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

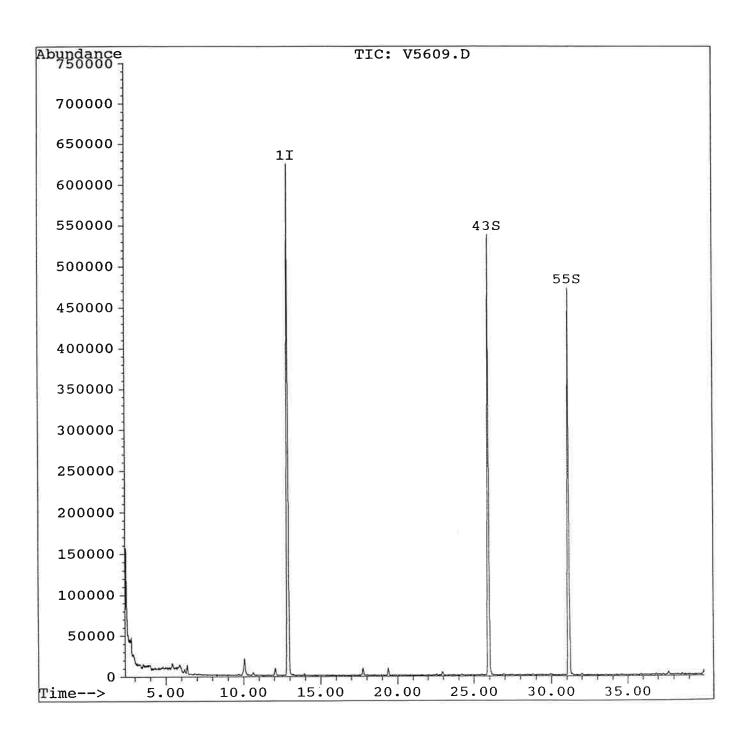
Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units I	Dev(Min)
1) Fluorobenzene	12.88	96	1875732	5.00 ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.94 31.13	95 152	693759 428288	%R6 4.69 ug/L 4.56 ug/L	93.84% 91.24%
Target Compounds					Ovalue

Data File: c:\hpchem\1\data\v5609.d

Acq On : 30 Jul 98 11:04 pm

Sample : R-6075.4


Misc

: Arco - RC-EL-48-0798

Quant Time: Jul 31 9:00 1998

: C:\HPCHEM\1\METHODS\RUN524.M Method

Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Vial: 10

: 5971 - In

Operator: vb

Multiplr: 1.00

Inst

Data File: c:\hpchem\1\data\v5610.d Vial: 11

: 30 Jul 98 11:50 pm Acq On Operator: vb : R-6075.5 Sample

Inst : 5971 - In Misc : Arco - RC-EC-60-0798 Multiplr: 1.00

Quant Time: Jul 31 9:00 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) Fluorobenzene	12.88	96	1681324	5.00 ug/L 0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.94 31.12	95 152	654063 434653	%Recovery 4.94 ug/L 98.70% 5.17 ug/L 103.31%

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration v5610.d RUN524.M Fri Jul 31 09:05:06 1998

Data File : c:\hpchem\1\data\v5611.d

Vial: 12

Acq On : 31 Jul 98 12:37 am

Operator: vb

Sample : R-6075.6

Inst : 5971 - In Multiplr: 1.00

Misc : Arco - RC-EC-00-0798

Quant Time: Jul 31 9:00 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

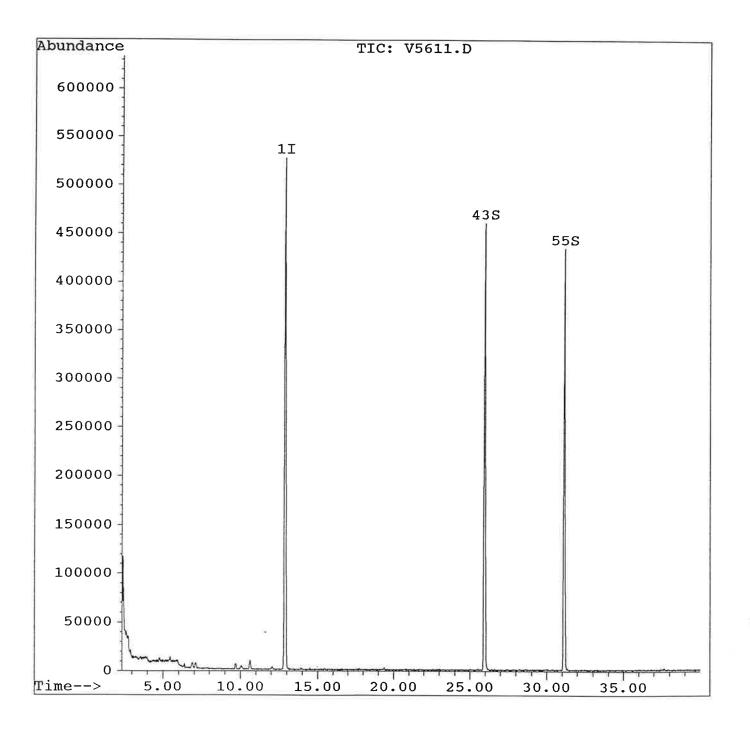
Title : 524.2 Purgable Organics
Last Update : Fri Jul 31 08:59:00 1998
Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene	12.87	96	1584269	5.00 ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.95 31.12	95 152	601294 398434	%R 4.81 ug/L 5.03 ug/L	ecovery 96.30% 100.50%
Target Compounds					Qvalue

^{(#) =} qualifier out of range (m) = manual integration
v5611.d RUN524.M Fri Jul 31 09:05:11 1998

Data File : c:\hpchem\1\data\v5611.d

Acq On : 31 Jul 98 12:37 am


Sample : R-6075.6

Misc : Arco - RC-EC-00-0798

Quant Time: Jul 31 9:00 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via: Multiple Level Calibration

Vial: 12

: 5971 - In

Operator: vb

Multiplr: 1.00

Inst

Data File: c:\hpchem\1\data\v5612.d Vial: 13 Acq On : 31 Jul 98 1:24 am

Operator: vb Sample : R-6075.7 Misc : Arco - RC-EC-33-0798 Inst : 5971 - In

Multiplr: 1.00

Quant Time: Jul 31 9:01 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via: Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene	12.87	96	1980936	5.00 ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.94 31.12	95 152	694809 430975	%R 4.45 ug/L 4.35 ug/L	ecovery 88.99% 86.94%
Target Compounds					Ovalue

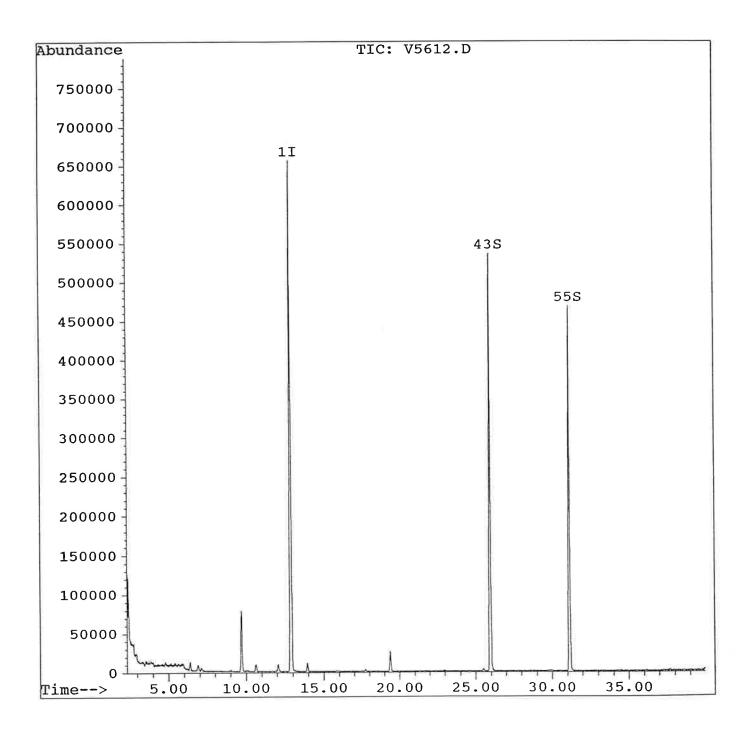
Qvalue

^{(#) =} qualifier out of range (m) = manual integration v5612.d RUN524.M Fri Jul 31 09:05:17 1998

Data File : c:\hpchem\1\data\v5612.d

Acq On : 31 Jul 98 1:24 am

: R-6075.7 Sample


Misc

: Arco - RC-EC-33-0798

Quant Time: Jul 31 9:01 1998

: C:\HPCHEM\1\METHODS\RUN524.M Method

: 524.2 Purgable Organics Title Last Update : Fri Jul 31 08:59:00 1998 Response via: Multiple Level Calibration

Vial: 13 Operator: vb

Multiplr: 1.00

: 5971 - In

Inst

Data File : c:\hpchem\1\data\v5613.d Acq On : 31 Jul 98

Vial: 14

Sample

Operator: vb

: R-6075.8

Inst : 5971 - In

Misc : Arco - RC-EC-33-0798A Quant Time: Jul 31 9:01 1998

Multiplr: 1.00

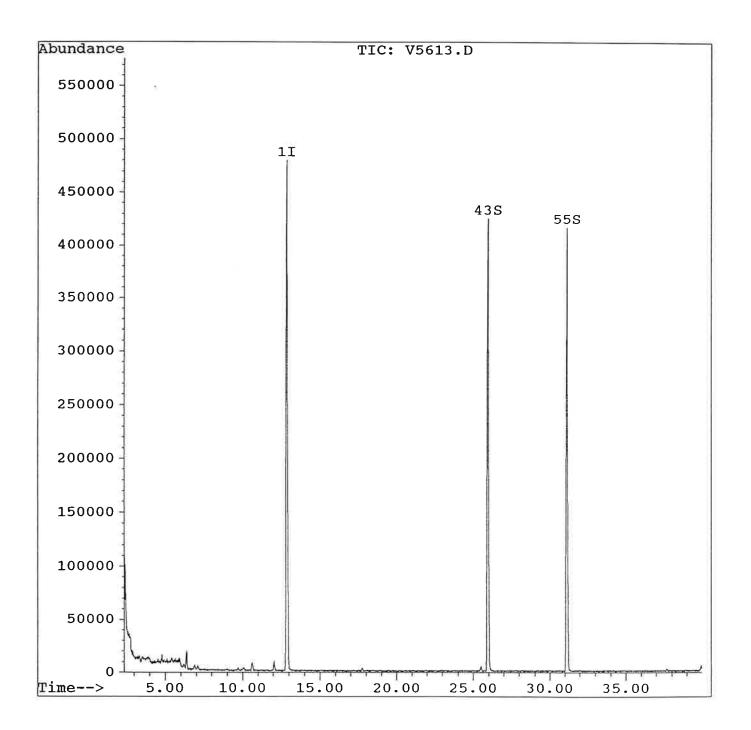
: C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene	12.88	96	1410636	5.00 ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.95 31.13	95 152	566384 374697	5.09 ug/L	
Target Compounds					Qvalue

^{(#) =} qualifier out of range (m) = manual integration v5613.d RUN524.M Fri Jul 31 09:05:22 1998

Data File : c:\hpchem\1\data\v5613.d


Acq On : 31 Jul 98 2:11 am

Sample : R-6075.8 Misc : Arco - RC-EC-33-0798A

Quant Time: Jul 31 9:01 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Vial: 14

: 5971 - In

Operator: vb

Multiplr: 1.00

Inst

Vial: 15 Data File : c:\hpchem\1\data\v5614.d Acq On : 31 Jul 98 2:58 am Operator: vb

Sample : R-6075.9 Misc : Arco - RC-EC-60-0798A Inst : 5971 - In

Multiplr: 1.00

Quant Time: Jul 31 9:01 1998

: C:\HPCHEM\1\METHODS\RUN524.M Method

Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

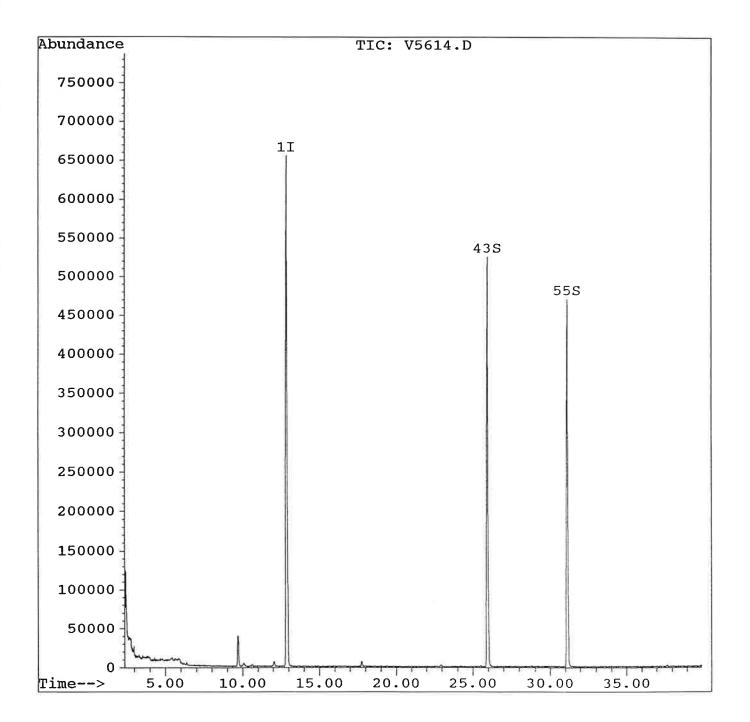
Internal Standards	R.T.	QIon	Response	Conc Units Dev	v(Min)
1) Fluorobenzene	12.88	96	1901618	5.00 ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.94 31.13	95 152	667890 423595	21	overy 39.11% 39.02%

Qvalue Target Compounds

^{(#) =} qualifier out of range (m) = manual integration v5614.d RUN524.M Fri Jul 31 09:05:29 1998

Data File: c:\hpchem\1\data\v5614.d Acq On : 31 Jul 98

Vial: 15 2:58 am Operator: vb


Sample : R-6075.9

Method

Inst : 5971 - In Multiplr: 1.00

Misc : Arco - RC-EC-60-0798A Quant Time: Jul 31 9:01 1998

: C:\HPCHEM\1\METHODS\RUN524.M Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via: Multiple Level Calibration

Data File: C:\HPCHEM\1\DATA\V5615.D Vial: 16
Acq On: 31 Jul 98 3:45 am Operator: vb

Sample : R-6075.10 Inst : 5971 - In

Misc : Arco - RC-ER-34-0798 Multiplr: 1.00

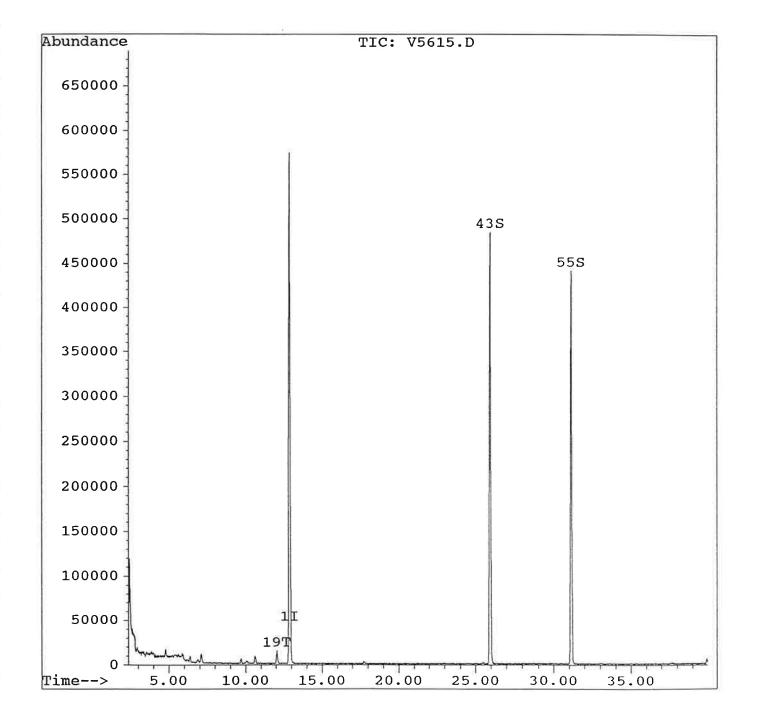
Quant Time: Jul 31 9:06 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics
Last Update : Fri Jul 31 08:59:00 1998
Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene	12.88	96	1692170	5.00 ug/L	0.00
System Monitoring Compounds				%R	ecovery
43) 4-bromofluorobenzene	25.95	95	629944	4.72 ug/L	94.45%
55) 1,2-dichlorobenzene-d4	31.14	152	401619	4.74 ug/L	94.84%
Target Compounds					Qvalue
19) Benzene	12.04	78	43032	0.13 ug/L	97

Data File : C:\HPCHEM\1\DATA\V5615.D


Vial: 16 Acq On : 31 Jul 98 3:45 am Operator: vb

: R-6075.10 : 5971 - In Sample Inst Misc : Arco - RC-ER-34-0798 Multiplr: 1.00

Quant Time: Jul 31 9:06 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M Title : 524.2 Purgable Organics

Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Data File : C:\HPCHEM\1\DATA\V5616.D Vial: 1 Acq On : 31 Jul 98 4:32 am Operator: vb

Inst : 5971 - In Multiplr: 1.00

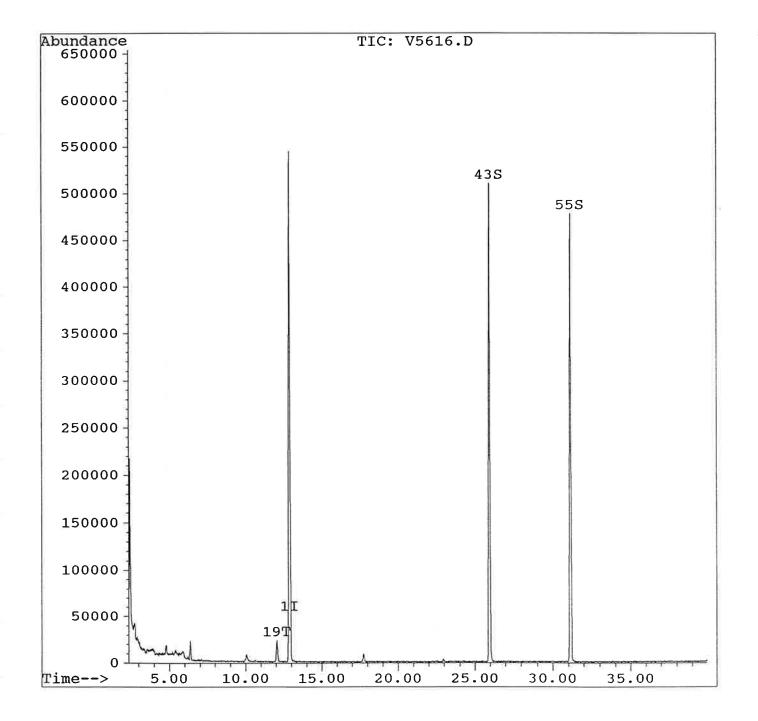
Sample : R-6075.11 Misc : Arco - RC-ER-61-0798 Quant Time: Jul 31 9:06 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics Last Update: Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene	12.87	96	1590691	5.00 ug/L	0.00
System Monitoring Compounds				%R	ecovery
43) 4-bromofluorobenzene	25.94	95	660307	5.27 ug/L	105.32%
55) 1,2-dichlorobenzene-d4	31.13	152	438587	5.51 ug/L	110.18%
Target Compounds					Qvalue
19) Benzene	12.04	78	69341	0.22 ug/L	92

Vial: 1 Data File: C:\HPCHEM\1\DATA\V5616.D


Acq On : 31 Jul 98 4:32 am Operator: vb

Sample : R-6075.11 Inst : 5971 - In : Arco - RC-ER-61-0798 Multiplr: 1.00 Misc

Quant Time: Jul 31 9:06 1998

: C:\HPCHEM\1\METHODS\RUN524.M Method

: 524.2 Purgable Organics Title Last Update : Fri Jul 31 08:59:00 1998 Response via : Multiple Level Calibration

Data File : c:\hpchem\1\data\v5617.d Vial: 2

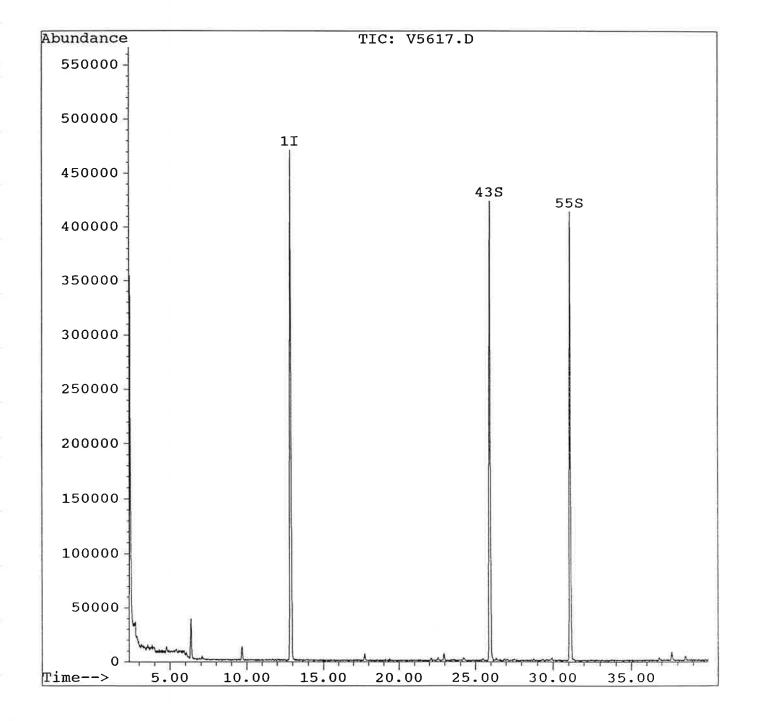
Acq On : 31 Jul 98 5:18 a Sample : R-6075.12 Misc : Arco - Trip Blank 5:18 am Operator: vb

Inst : 5971 - In Multiplr: 1.00

Quant Time: Jul 31 9:01 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M
Title : 524.2 Purgable Organics Last Update : Fri Jul 31 08:59:00 1998 Response via: Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene	12.87	96	1385284	5.00 ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.95 31.11	95 152	543420 374225	%R 4.98 ug/L 5.40 ug/L	
Target Compounds					Qvalue


Data File: c:\hpchem\1\data\v5617.d Vial: 2
Acq On: 31 Jul 98 5:18 am Operator: vb

Sample: R-6075.12 Inst: 5971 - In Misc: Arco - Trip Blank Multiplr: 1.00

Quant Time: Jul 31 9:01 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

Title : 524.2 Purgable Organics
Last Update : Fri Jul 31 08:59:00 1998
Response via : Multiple Level Calibration

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Customer : Arco

ſ		SMC1	SMC2		OTHER	TOT
- 1	SAMPLE NO.	#	#	#	#	OUT
01	VBLK01	104	95			
02	R-6075.3	95	96			
03[R-6075.4	94	91			
04[R-6075.5	99	103			
05[R-6075.6	96	101			
06[R-6075.7	89	87			
07	R-6075.8	102	106			
08[R-6075.9	89	89			
09	R-6075.10	94	95			
10[R-6075.11	105	110			
11	R-6075.121	100	108			
12						
13						
14						
15						
16						l fl
17						111
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						

QC LIMITS

SMC1 = 4-bromofluorobenzene

SMC2 = 1,2-dichlorobenzene-d4

(85-115) (85-115)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

RELIANCE LABORATORIES, INC. WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Matrix Spike - Sample No.:

R-6075.3

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
Benzene	5.00	0.00	5.28	106	(80-120)
Toluene	5.00	0.00	5.25	105	(80-120)
Ethylbenzene	5.00	0.00	5.42	108	(80-120)
m&p-xylenes	5.00	0.00	5.32	106	(80-120)
o-xylenes	5.00	0.00	5.48	110	(80-120)
Styrene	5.00	0.00	5.45	109	(80-120)
		, .			

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QC LI	MITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
Benzene	5.00	5.24	105	1	20	(80-120)
Toluene	5.00	5.37	107	2	20	(80-120)
Ethylbenzene	5.00	5.60	112	3	20	(80-120)
m&p-xylenes	5.00	5.52	110	4	20	(80-120)
o-xylenes	5.00	5.62	112	3	20	(80-120)
Styrene	5.00	5.70	114	4	20	(80-120)

# (Column to	be	used	to	flag	recovery	and	RPD	values	with	an	asteris	k
-----	-----------	----	------	----	------	----------	-----	-----	--------	------	----	---------	---

Comments:			

^{*} Values outside of QC limits

VOLATILE METHOD BLANK SUMMARY

Customer: Arco	
Lab File ID: V5606.D	Lab Sample ID: BLANK
Date Analyzed:7/30/98_	Time Analyzed: 2043
GC Column: DB-624 ID: 0.53 (mm)	
Instrument ID: HP5971A	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
Ω1	R-6075.3	EL-20	V5608.D	2217
	R-6075.4	EL-48	V5609.D	2304
	R-6075.5	EC-60	V5610.D	2350
	R-6075.6	EC-00	V5611.D	0037
	R-6075.7	EC-33	V5612.D	0124
	R-6075.8	EC-33A	V5613.D	0211
	R-6075.9	EC-60A	V5614.D	0258
	R-6075.10	ER-34	V5614.D V5615.D	0345
	R-6075.11	ER-61	V5616.D	0432
	R-6075.121	TB	V5617.D	0518
11	R-00/5.121		V5617.D	0518
		- E		
12 13				
14				
15				
16		-		
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:			

VOLATILE ORGANIC ANALYSIS DATA SHEET

Client: Arco - Method blank Sample ID: blank

Units: ug/L Date Analyzed: 07/30/98

CAS No	Compound	Concentration	MDL	
71-43-2	Benzene	< 0.13	0.13	
108-88-3	Toluene	< 0.6	0.60	
100-41-4	Ethylbenzene	< 0.22	0.22	
1330-20-7	m + p-Xylenes	< 0.22	0.22	
1330-20-7	o-Xylene	< 0.58	0.58	

ND = Not detected

B = Compound found in blank and sample

J = Detected below MDL

Data File : C:\HPCHEM\1\DATA\V5606.D Vial: 7 Acq On : 30 Jul 98 8:43 pm Sample : blank Operator: vb

Inst : 5971 - In

Misc

Multiplr: 1.00

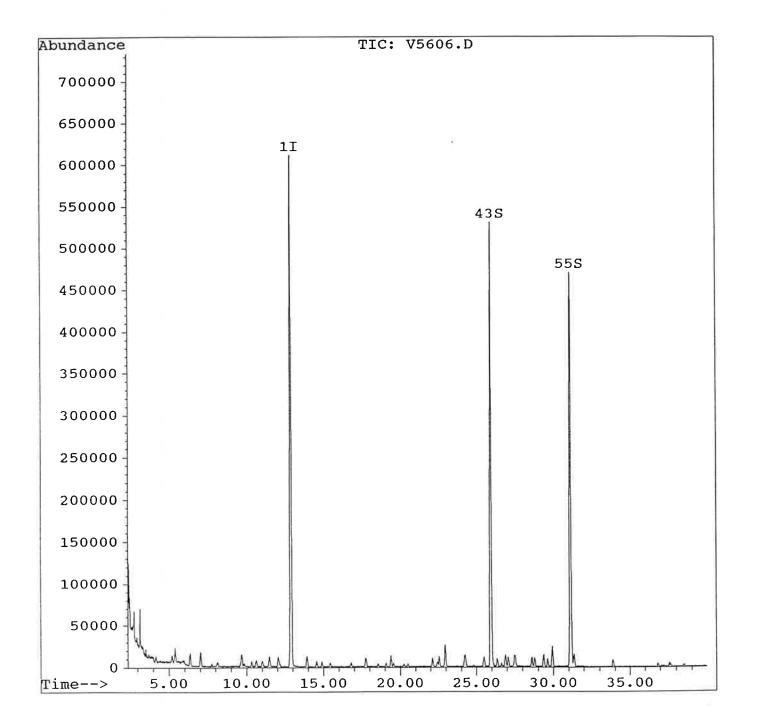
Quant Time: Aug 7 8:48 1998

Method : C:\HPCHEM\1\METHODS\RUN524.M

: 524.2 Purgable Organics Title Last Update : Fri Aug 07 08:48:50 1998 Response via: Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Fluorobenzene	12.87	96	1829496	5.00 ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene 55) 1,2-dichlorobenzene-d4	25.94 31.12	95 152	715083 437698	%R 5.18 ug/L 4.76 ug/L	
Target Compounds					Qvalue

Vial: 7 Data File: C:\HPCHEM\1\DATA\V5606.D Acq On : 30 Jul 98 8:43 pm Operator: vb


: blank : 5971 - In Inst Sample Multiplr: 1.00

Misc

Quant Time: Aug 7 8:48 1998

: C:\HPCHEM\1\METHODS\RUN524.M Method

: 524.2 Purgable Organics Title Last Update : Fri Aug 07 08:48:50 1998 Response via : Multiple Level Calibration

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Customer	:	Arco			
0400011101	•	,			

Lab File ID: V5602.D

BFB Injection Date: _7/30/98

Instrument ID: HP5971A

BFB Injection Time: __1747

GC Column:

DB-624

ID: ___0.53 (mm)

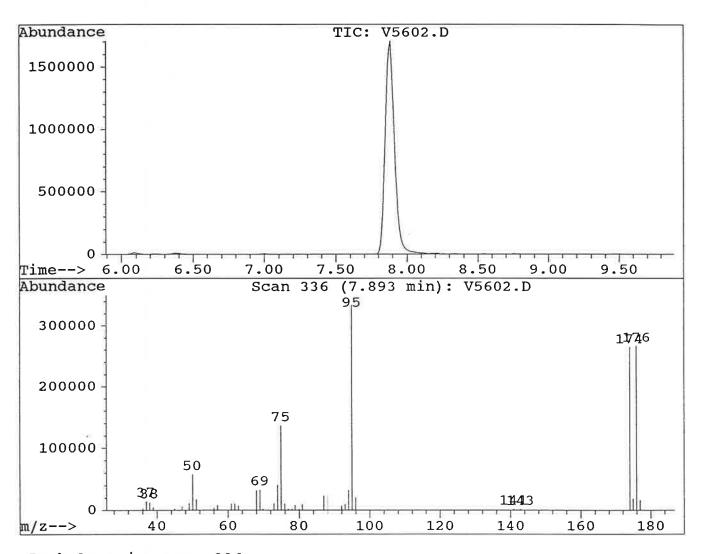
		%RELATIV	E
m/e	ION ABUNDANCE CRITERIA	ABUNDANC	E
50	8.0 - 40.0% of mass 95	17.3	
75	30.0 - 66.0% of mass 95	40.9	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.3	
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	79.2	
175	4.0 - 9.0% of mass 174	5.7 (7.2)1
176	93.0 - 101.0% of mass 174	79.8 (100.8)1
177	5.0 - 9.0% of mass 176	5.1 (6.3)2

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

		LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD010	ICC001	V5603.D	7/30/98	1822
02	VSTD020	ICC002	V5604.D	7/30/98	1909
11	VSTD050	ICC005	V5605.D	7/30/98	1956
04	VBLK01	BLANK	V5606.D	7/30/98	2043
05	R-6075.3	EL-20	V5608.D	7/30/98	2217
06	R-6075.4	EL-48	V5609.D	7/30/98	2304
07	R-6075.5	EC-60	V5610.D	7/30/98	2350
80	R-6075.6	EC-00	V5611.D	7/31/98	0037
09	R-6075.7	EC-33	V5612.D	7/31/98	0124
10	R-6075.8	EC-33A	V5613.D	7/31/98	0211
11	R-6075.9	EC-60A	V5614.D	7/31/98	0258
12	R-6075.10	ER-34	V5615.D	7/31/98	0345
13	R-6075.11	ER-61	V5616.D	7/31/98	0432
14	R-6075.121	ТВ	V5617.D	7/31/98	0518
15					
16					
17					*
18					
19					
20					
21					
22					


Data File : C:\HPCHEM\1\DATA\V5602.D Acq On : 30 Jul 98 5:47 pm Vial: 1 Operator: vb

Sample : 5971 - In : bfb Inst Multiplr: 1.00

Misc

Method : C:\HPCHEM\1\METHODS\RUN524.M

: 524.2 Purgable Organics Title

Peak Apex is scan: 336

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	17.3	57760	PASS
75	95	30	80	40.9	136576	PASS
95	95	100	100	100.0	334080	PASS
96	95	5	9	6.3	21064	PASS
173	174	0	2	0.0	0	PASS
174	95	50	100	79.2	264640	PASS
175	174	5	9	7.2	19032	PASS
176	174	95	101	100.8	266752	PASS
177	176	5	9	6.3	16872	PASS

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Customer Arco

Instrument ID: HP5971A Calibration Date(s): 6/30/98 6/30/98

Calibration Times: 1822 1956

GC Column: DB-624	ID:	0.53	_(mm)				
Lab File ID: RRF05 = V5605.D	RRF01 =	V5603.D		RRF02 =	V5604.D		
COMPOUND	RRF01	RRF02	RRF05			RRF	% RSD
Benzene	0.972	1.000	1.012			0.995	2.1
Toluene	0.886	0.908	0.903			0.899	1.3
Ethylbenzene	1.001	1.074	1.061			1.045	3.7
m&p-xylenes	0.707	0.753	0.765			0.742	4.1
o-xylene	0.699	0.750	0.741			0.730	3.7
Styrene	0.495	0.519	0.527			0.514	3.2
4-bromofluorobenzene	0.396	0.387	0.399			0.394	1.6
1,2-dichlorobenzene-d4	0.252	0.242	0.257			0.250	3.1

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Customer : Arco

Lab File ID (Standard):

V5605.D

Date Analyzed: 7/30/98

Instrument ID: HP5971A

Time Analyzed:

1956

GC Column:

DB-624

ID: 0.53 (mm)

		IS1									
		AREA #	RT #	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR STD	1788990	12.87								
	UPPER LIMIT	3577980	13.37								
	LOWER LIMIT	894495	12.37								
	SAMPLE										
	NO.										
01	VBLK01	1829496	12.87								
02	R-6075.3	1750106	12.88								
03	R-6075.4	1875732	12.88								
04	R-6075.5	1681324	12.88								
05	R-6075.6	1584269	12.87								
06	R-6075.7	1980936	12.87				8				
07	R-6075.8	1410636	12.88								
08	R-6075.9	1901618	12.88								
09	R-6075.10	1692170	12.88								
10	R-6075.11	1590691	12.87								
11	R-6075.121	1385284	12.87								
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Jada Wayara

Certifies That
Reliance Laboratories, Inc.
3090 Wood Bridge Avenue
Edison, NJ 08837

having duly met the requirements of the

Regulations Governing Laboratory Certification And Standards Of Performance NJ.A.C. 7:18 et. seq.

is hereby approved as a

State Certified Water Laboratory

To perform the analyses as indicated on the Annual Certified Parameter List which must accompany this certificate to be valid

Of the Commissioner

12687
PERMANENT CERTIFICATION NUMBER
January 11, 1989
DATE

N.J.A.C. 7:18-2.11(d) and agreed to by the Laboratory Manager on filing the application This certification is subject to unannounced laboratory inspections as specified by

TO BE CGNSPICUOUSLY DISPLAYED AT THE LABORATORY WITH THE ANNUAL CERTIFIED PARAMETER LIST.

YUNIN OF CUSTODY

Sample CP D8 CP D8 CP D8 RC-E1-RC-E1-24-34 BC-EC RL-EC-Preserve Instructions: Sampler Name: Brien Petert FAX (724) PHONE (724) 728 - 6586 ADDRESS: CUSTOMER: Monaca ARCO 728-6498 400 frankfart Rd 15061

۲. اااه Agent of: Received by: Agent of: Submitted by:

Daie/Ilma.

f)ale(Time: Anent of: Received by: Agent of: Submitted by:

Agent of: Received by:

Agent of:

Deliverables: Report to:

D

Customized Reduced Standard Submitted by:

	(
	•	-	1	
	•			
		J		
	•		_	
	1	1	_	
	(-	
	•			
			1	ĺ
	1		-	
	•	١		
	ĺ			
	1		J	
			_	
	4	•		
			-	
	ļ	Į	_	

Tel. 732-738-5454 / Fax. 732-738-5841 Reliance Laboratories, Inc. 175 May Street Edlson, NJ 08837

Page 1 of 2

LAB ID:	DATE:
 ->.	7-29
00,	44- 6
75	ı

Project ID: Turnaround time:

Fax results (9) / n (724) 724 6448 (standard / rush)

	-34-07W	-60-0718A	-33-0785A	33 -07K	-60-07g	-66-07 9	49-078	-20-0798	-7-98A	-7-18	PLE ID Da	ā Y D
		7-29-9 8:47	7-29-94	7-29-98 8:50	7-29-98 9:02	7-29-98 8:47		7-29-98	7-29-944 1534	7-29-95	/ n Date Spld.	
	9:12	14:81	8:85	\$:\$	9:62	247	30.6	9:00	1534	1530	Time	ī
	_	1	-	_	-	-	-	_	_	_	# of containers	
											Water	z
											Soil	MATRIX
	*										Other	×
l	×	×	×	×	×	×	Ж.	×			BTEX (602/8020)	
											TPH (418.1)	
											VOA (624/8260) +15 *	
											BNA / BN / + 25 *	ORGANICS
											Pest / Herb	Ž
											PCB's	Š
											TCLP Organics / PP +40	
1									+	x	Benzane	
											TCLP/ RCRA (8)	
											Priority Pol.(13)	Z
											Total Metals (list below)	METALS
											Dissolved Metals	S
	j.										Other-	
											pH / CN / Sulfide	
											A.pt / % solids *	
											O&G/TSS/TOX .	0
		6									BOD / COD / TOC *	OTHERS
												RS
											10	
									1/002 43.32	100) 43.	* circle	
									32	89		

CHAIN OF CUSTODY

Sampler Name: Break Patrack PHONE (724) Sample Intact: 8 / n Preserved: y / 3 FAX (734) CUSTOMER: Tro Blank Manaca PA ADDRESS: Nr. FR - 61-0784 TO BLACK Instructions: SAMPLE ID Date Spld. Submitted by: Brown Petroff アナス 400 from Kfort Rd Arco chemical 7-24-97 728-6498 A#A 728-6586 13061 Resolts Please Time 9: N # of containers T47 Heed Water Submitted by: Agent of: MATRIX Soil Results DAVE Other BTEX (602/8020) Small wood TPH (418.1) Se fors Tel. 732-738-5454 / Fax. 732-738-5841 VOA (624/8260) +15 * Reliance Laboratories, Inc. 175 May Street ORGANICS BNA / BN / + 25 * Pest / Herb Edlson, NJ 08837 mos day and/ar PCB's TCLP Organics / PP +40 Agent of: Submitted by: Other -8-3-98 3 TCLP/ RCRA (8) Priority Pol.(13) METALS Total Metals (list below) シナン Dissolved Metals Other-Resolts pH / CN / Sulfide DATE: Project ID: Fax results: 6 / n (724) Turnaround time: LAB ID: Fl.pt / % solids 0 & G / TSS / TOX * OTHERS Erst. Deliverables Report to: 7-29-98 BOD / COD / TOC . R-6075 CHANCE Page Z of Z (stenderd / rush) Kro 728-6488 Notes: circle 242

Received by: Agent of:

Received by:

, ; of:

Red --- 1 Standard

Received by:

jent

, since